Dynamic strain scanning optimization: an efficient strain design strategy for balanced yield, titer, and productivity. DySScO strategy for strain design

نویسندگان

  • Kai Zhuang
  • Laurence Yang
  • William R Cluett
  • Radhakrishnan Mahadevan
چکیده

BACKGROUND In recent years, constraint-based metabolic models have emerged as an important tool for metabolic engineering; a number of computational algorithms have been developed for identifying metabolic engineering strategies where the production of the desired chemical is coupled with the growth of the organism. A caveat of the existing algorithms is that they do not take the bioprocess into consideration; as a result, while the product yield can be optimized using these algorithms, the product titer and productivity cannot be optimized. In order to address this issue, we developed the Dynamic Strain Scanning Optimization (DySScO) strategy, which integrates the Dynamic Flux Balance Analysis (dFBA) method with existing strain algorithms. RESULTS In order to demonstrate the effective of the DySScO strategy, we applied this strategy to the design of Escherichia coli strains targeted for succinate and 1,4-butanediol production respectively. We evaluated consequences of the tradeoff between growth yield and product yield with respect to titer and productivity, and showed that the DySScO strategy is capable of producing strains that balance the product yield, titer, and productivity. In addition, we evaluated the economic viability of the designed strain, and showed that the economic performance of a strain can be strongly affected by the price difference between the product and the feedstock. CONCLUSION Our study demonstrated that the DySScO strategy is a useful computational tool for designing microbial strains with balanced yield, titer, and productivity, and has potential applications in evaluating the economic performance of the design strains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient estimation of the maximum metabolic productivity of batch systems

BACKGROUND Production of chemicals from engineered organisms in a batch culture involves an inherent trade-off between productivity, yield, and titer. Existing strategies for strain design typically focus on designing mutations that achieve the highest yield possible while maintaining growth viability. While these methods are computationally tractable, an optimum productivity could be achieved ...

متن کامل

Optimization of Microbial Hydrogen Production from Maize Stalk Using an Isolated Strain

Experimental designs were applied for optimizing media and process parameters for hydrogen production from maize stalk hydrolyzate by a newly isolated facultative strain.Plackett-Burman design was used to identify the significant components and using this method the media components - glucose, yeast extract, malt extract, peptone, and NaCl were identified as signi...

متن کامل

Optimization of die geometry for Tube Channel Pressing

Since tubes have numerous industrial applications, different attempts are focused on the Severe Plastic Deformation (SPD) processes of tubes. As an illustration, Tube Channel Pressing (TCP) is an attractive process for this purpose since it can be used for processing of different sizes of tubes. However, more attempts are needed to improve the outcomes of TCP. For example, imposing of greater s...

متن کامل

Pathway optimization by re-design of untranslated regions for L-tyrosine production in Escherichia coli

L-tyrosine is a commercially important compound in the food, pharmaceutical, chemical, and cosmetic industries. Although several attempts have been made to improve L-tyrosine production, translation-level expression control and carbon flux rebalancing around phosphoenolpyruvate (PEP) node still remain to be achieved for optimizing the pathway. Here, we demonstrate pathway optimization by alteri...

متن کامل

Optimal Design of Geometrically Nonlinear Structures Under a Stability Constraint

This paper suggests an optimization-based methodology for the design of minimum weight structures with kinematic nonlinear behavior. Attention is focused on three-dimensional reticulated structures idealized with beam elements under proportional static loadings. The algorithm used for optimization is based on a classical optimality criterion approach using an active-set strategy for extreme lim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2013